FILTER-PROTECTED CAROTID ANGIOPLASTY
PROSPECTIVE ANALYSIS OF MICROSCOPIC
FINDINGS OF EMBOLIC MATERIAL AND
CORRELATION WITH CLINICAL AND
MORPHOLOGICAL CHARACTERISTICS IN 400 CASES

Peter Huppert
Professor of Radiology and Neuroradiology
Department of Radiology, Neuroradiology and Nuclear Medicine

G. Wiest
Department of Pathology

Klinikum Darmstadt
Academic Teaching Hospital
University of Frankfurt and Mannheim/Heidelberg
Germany
Disclosures

Speaker name: Huppert, Peter

I have the following potential conflicts of interest to report:

- Consulting: - Boston Scientific
 - Abbott Vascular
 - Johnson&Johnson/Cordis
 - Merritt Medical
Study Purpose & Design

- To correlate the amount of embolic material captured during filter protected CAS with baseline clinical data, morphological characteristics of stenoses, MRI findings and clinical follow-up.

- Consecutive cases 01/2006-09/2014

- Independent neurological examination
Treatment Characteristics

- Consecutive patients: 426 (de novo stenoses)
- CAS not performed: 26 (6.1%)
- CAS performed: 400
- Stent: Smart/Precise Rx™ 7-9 /20-40 mm
- Protection: Angioguard Rx™ 4-7 mm
- One operator: (P.H.)
- PTA post Stent: 392/400 (98%; 4-6 mm)
Patients Characteristics

- Age: 44-94a
- Male: 72%
- Left side: 58%
- Symptomatic: 43%
- Interval:
 - \leq30d: 83%
 - >30d: 17%
Angiographical Lesion Characteristics

Shape
- Concentric: 60%
- Eccentric: 40%

Margin
- Smooth: 39%
- Ulcerated: 61%

Calcification
- Yes: 81%
- No: 19%

Grade of Stenoses
- <90%: 33%
- ≥90%: 67%

Length of Stenoses
- <10 mm: 54%
- 10-20 mm: 42%
- >20 mm: 4%
Work-up and Analysis of Embolic Material

- Formalin fixation
- Extraction of material
- Separation of particles
- Light microscopy (x 25)
- Number of particles
- Size of particles
- One operator (G.W.)
MR Imaging day 1 after CAS

- DWI / ADC-Mapping
- Correlation to target/non-target area
- Correlation to age
- Correlation to gender
- Correlation to filter embolic material
Number and Size of Embolic Particles

<table>
<thead>
<tr>
<th>number</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.5</td>
</tr>
<tr>
<td>1-10</td>
<td>37.5</td>
</tr>
<tr>
<td>11-50</td>
<td>42</td>
</tr>
<tr>
<td>51-100</td>
<td>6.3</td>
</tr>
<tr>
<td>101-150</td>
<td>4.0</td>
</tr>
<tr>
<td>>150</td>
<td>2.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>max. size [µm]</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-50</td>
<td>12.2</td>
</tr>
<tr>
<td>51-100</td>
<td>14.3</td>
</tr>
<tr>
<td>101-200</td>
<td>16.9</td>
</tr>
<tr>
<td>201-300</td>
<td>23.4</td>
</tr>
<tr>
<td>301-400</td>
<td>12.2</td>
</tr>
<tr>
<td>401-600</td>
<td>9.5</td>
</tr>
<tr>
<td>601-800</td>
<td>3.7</td>
</tr>
<tr>
<td>801-1.000</td>
<td>4.2</td>
</tr>
<tr>
<td>>1.000</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Pts. & Lesions Characteristics: Correlation to Embolic Material

<table>
<thead>
<tr>
<th>n=400</th>
<th>criteria</th>
<th>mean number</th>
<th>p</th>
<th>mean size (μm)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td><80 a =/>80 a</td>
<td>16.5 20.7</td>
<td>0.1</td>
<td>286 373</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>asymptomatic symptomatic</td>
<td>13.0 24.6</td>
<td><.01</td>
<td>307 286</td>
<td>0.4</td>
</tr>
<tr>
<td>Stenosis</td>
<td><90 % =/>90 %</td>
<td>16.9 17.3</td>
<td>0.2</td>
<td>252 360</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td><10 mm =/>10 mm</td>
<td>16.8 19.6</td>
<td>0.2</td>
<td>240 371</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>concentric excentric</td>
<td>14.9 18.0</td>
<td>0.7</td>
<td>314 290</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>smooth ulcerated</td>
<td>16.2 22.7</td>
<td>0.08</td>
<td>194 315</td>
<td><.05</td>
</tr>
<tr>
<td></td>
<td>calcified non-calcified</td>
<td>10.3 24.9</td>
<td><0.05</td>
<td>314 290</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Correlation of DWI-Lesions

<table>
<thead>
<tr>
<th>Total number of DWI lesions</th>
<th>390</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with DWI lesions</td>
<td>132 (33%)</td>
</tr>
<tr>
<td>Number of DWI lesions/patient</td>
<td>1-25 (median 3)</td>
</tr>
<tr>
<td>within target areas</td>
<td>280/390 (72%)</td>
</tr>
<tr>
<td>within non-target areas</td>
<td>110/390 (28%)</td>
</tr>
<tr>
<td>in pts. >/=80 yrs.</td>
<td>15/29 (52%)</td>
</tr>
<tr>
<td>in pts. <80 yrs.</td>
<td>117/371 (31%)</td>
</tr>
<tr>
<td></=50 filter particles</td>
<td>59/348 (17%)</td>
</tr>
<tr>
<td>>50 filter particles</td>
<td>29/52 (56%)</td>
</tr>
</tbody>
</table>

- p<0.05
Clinical Outcome

<table>
<thead>
<tr>
<th></th>
<th>asymptomatic (n= 379; 95%)</th>
<th>30d TIA (n= 12; 3.0%)</th>
<th>30d stroke (n= 9; 2.2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of particles (median)</td>
<td>14</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>max. size of particles (median)</td>
<td>300 µm</td>
<td>385 µm</td>
<td>650 µm</td>
</tr>
</tbody>
</table>

P<0.05
Conclusions

- Number of embolic particles during CAS using open cell design stents was increased in symptomatic vs. asymptomatic and in non-calcified vs. calcified carotid artery stenoses.

- Size of embolic particles was larger in ulcerated irregular vs. smooth carotid artery stenoses.
Conclusions

- DWI Lesions were more frequent in target areas vs. non-target areas, in patients older than 79 years and in procedures causing more than 50 particles within the filters.
Conclusions

- Despite filter protection 9 of 400 patients (2.2%) developed stroke during (n=6) and up to 30d after (n=3) CAS.
- Embolic particles were significantly larger in these patients compared to asymptomatic patients.
- Filter protection cannot completely avoid embolic complications in case with massive embolism.
Thank you for Attention!
FILTER-PROTECTED CAROTID ANGIOPLASTY
PROSPECTIVE ANALYSIS OF MICROSCOPIC
FINDINGS OF EMBOLIC MATERIAL AND
CORRELATION WITH CLINICAL AND
MORPHOLOGICAL CHARACTERISTICS IN 400 CASES

Peter Huppert
Professor of Radiology and Neuroradiology
Department of Radiology, Neuroradiology and Nuclear Medicine

G. Wiest
Department of Pathology

Klinikum Darmstadt
Academic Teaching Hospital
University of Frankfurt and Mannheim/Heidelberg
Germany