Ascending Aorta:
Is The Endovascular Approach Realistic?

Tilo Kölbl, Christian Detter, Yskert v. Kodolitsch, Sebastian Debus

University Heart Center Hamburg
University Hospital Eppendorf
Disclosure

Speaker name:

Tilo Kölbel, MD

I have the following potential conflicts of interest to report:

☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☒ Other: Proctoring, travel, research-grants, patents with Cook Medical

☐ I do not have any potential conflict of interest
Gold Standard for Ascending Aorta

Open Surgery:
- Sternotomy, CPB
- Ascending replacement
- With/without aortic valve
- Hemiarch/elephant trunk

Gold Standard for Ascending Aorta

But........

Patients with
* Old age
* Severe comorbidities
* Previous cardiac surgery
* ...

Octogenerians

Previous cardiac surgery

p = 0.07

Estrera et al. 2010, Ann Thorac Surg 89:1467–74
Gold Standard for Ascending Aorta

But........

Patients with

- Old age
- Severe comorbidities
- Previous cardiac surgery
- ...

are often turned down for open surgery

and

might benefit from a less invasive therapy.

Bonser et al. 2011, JACC 58: 2455-73
Gold Standard for Ascending Aorta

But........

Endovascular Treatment of the Ascending Aorta

Is there room for Endovascular techniques in ascending pathology?
Endovascular Treatment of the Ascending Aorta

Lesions post surgery:
- Pseudoaneurysm
- Postsurgery bleeding
- Residual Dissection
- Lost TAVI

- Ascending aneurysm
- Type A dissection
Pseudoaneurysm
Postsurgery Bleeding
Residual Dissection
Lost TAVI
Ascending Aneurysm

- Most are conical and lack proximal landing zone.

- Endovascular exclusion usually not possible in native vessel

Kolvenbach et al. 2011; J Vasc Surg 53: 1431-8
Ascending Aneurysm
Ascending Aorta and Arch:
Endovascular Repair of Type A Aortic Dissection

Is there room for Endovascular techniques in acute Type A Aortic dissection?
Endovascular Approaches to Acute Aortic Type A Dissection: A CT-Based Feasibility Study

J. Sobocinski a, N. O’Brien a, B. Maurel b, M. Bartoli c, Y. Goueffic d, T. Sassard e, M. Midulla f, M. Koussa a, A. Vincentelli a, S. Haulon a,*

Conclusion

Approximately half of the patients currently undergoing open repair of an acute type A dissection could potentially be candidates for an endovascular repair. It is reasonable to extrapolate that the same proportion of patients who currently refused surgery on the basis of being unfit for open repair would have anatomy suitable for an endovascular repair. Clinical studies should be conducted in this subgroup of patients to determine a potential future role of endovascular repair in acute type A dissections.
Anatomical Suitability

- Entry-tear at distal to sino-tubular junction
- Proximal and distal landing zone ≥ 20mm
- True lumen diameter ≤ 38mm
- Total lumen diameter ≤ 46mm
- Appropriate access vessels
- No significant Aortic regurge

Sobocinski et al 2011, EJVES 42: 442-7
Literature Review

Endo-Repair of Type A

Endovascular stenting of the ascending aorta for Type A aortic dissections in patients at high risk for open surgery

Ronchey et al. 2013, Eur J Vasc Endovasc Surg 45: 475-80

Conclusion: Endovascular treatment of TAAD is challenging but feasible in a selected subset of patients. Further research remains mandatory.

Table: Endovascular Stenting of the Ascending Aorta for Type A Aortic Dissections

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Stentgraft</th>
<th>Number of patients</th>
<th>Acute (%)</th>
<th>30-day Mortality (%)</th>
<th>Endoleak (%)</th>
<th>CVA (%)</th>
<th>Late mortality (%)</th>
<th>Prev interv</th>
<th>FU (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorros et al.</td>
<td>2000</td>
<td>Lacteba</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kato et al.</td>
<td>2001</td>
<td>Home-made</td>
<td>7</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0</td>
<td>3–42</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>2003</td>
<td>COV Z-STENT</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ihnken et al.</td>
<td>2004</td>
<td>GENERIC BARE, GORE</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>2004</td>
<td>GIANTURCO Z</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Rayan et al.</td>
<td>2004</td>
<td>GORE</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Verhoye et al.</td>
<td>2006</td>
<td>COOK-Z</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Zimpfer et al.</td>
<td>2006</td>
<td>JOTEC</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Senay et al.</td>
<td>2007</td>
<td>GORE TAG</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Mussa et al.</td>
<td>2007</td>
<td>GORE TAG</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Palma et al.</td>
<td>2008</td>
<td>BRAILE BIOMED</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kische et al.</td>
<td>2008</td>
<td>COOK</td>
<td>2</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nienaber et al.</td>
<td>2011</td>
<td>VARIOUS</td>
<td>6</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ye et al.</td>
<td>2011</td>
<td>VARIOUS</td>
<td>10</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Metcalfe et al.</td>
<td>2012</td>
<td>Cook</td>
<td>1</td>
<td>1(100)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

N ≈13

Acute Type A

Ronchey et al. 2013, Eur J Vasc Endovasc Surg 45: 475-80
Chronic Type A Dissection

Transseptal Guidewire Stabilization Facilitates Stent-Graft Deployment for Persistent Proximal Ascending Aortic Dissection

Gerald Dorros, MD; Ari M. Dorros, MD; Sara Planton, RN; Daniel O’Hair, MD; and Mahmoud Zayed, MD

Dorros et al. 2000, JEV 7: 506-12
Chronic Type A Dissection

Indication, timing and results of endovascular treatment of type A aortic dissection

C. A. NIENABER, S. KISCHE, I. AKIN, A. LIEBOLD, B. WEIDTMANN, H. INCE, T. C. REHDERS

- Subacute / chronic
- n = 6
- Technical success 5/6
- Mortality 1/6

Nienaber et al. 2011; J Vasc Endovasc Surg (It) 18: 187-91
The first endovascular repair of an acute type A dissection using an endograft designed for the ascending aorta

Matthew J. Metcalfe, MD, MRCS, Alan Karthikesalingam, MRCS, Steve A. Black, FRCS, Ian M. Loftus, MD, FRCS, Robert Morgan, FRCR, and Matt M. Thompson, MD, FRCS, London, United Kingdom
Branched Arch Endograft

- Multicenter Study
- \(n = 38 \)
- Technical success 32/38
- Mortality 5/38 (13%)
- Stroke/TIA 6/38

Acute Type A Dissection
Branched Arch Endograft
Limitations of Femoral Access

- Distance to ascending and arch
- Tortuosity and kinking
- Left ventricular wire-position
- Difficult true lumen access
- Apposition
Acute Type A Dissection
Transapical TEVAR

Acute Type A Dissection
Transapical TEVAR

Transapical TEVAR

12h postop.

Transapical TEVAR

24m postop.
Is the Endovascular Approach Realistic?

- Yes, in selected cases.

- Remaining problems:
 - Pulsatility, movement of aortic arch
 - Impact of endografts on AV unknown
 - Proximal seal
 - Patient selection
 - Best access
 - Referral and interdisciplinarity

- Most beneficial after previous surgery:
 - Higher risk in Redo-surgery
 - Safe proximal landing.
Summary

- Endovascular Treatment of ascending aorta potentially beneficial in selected patients.
- Postsurgery lesions and Type A dissection work.
- Ascending aneurysms in native vessel do not.
- Transfemoral delivery challenging, transapical access route potentially easier.
- Currently available stent-grafts do not meet requirements.
- Role of endovascular treatment in the ascending aorta yet to be defined.
IT'S OKAY, EVERYBODY. I GOT THE ONE THAT ATTACKED US!

Aortic Dissection
Ascending Aorta: Is The Endovascular Approach Realistic?

Tilo Kölbel, Christian Detter, Yskert v. Kodolitsch, Sebastian Debus

University Heart Center Hamburg
University Hospital Eppendorf