Venous Stenting:
How does the optimal device look like and does it already exist?

Prof. Cees H.A. Wittens, MD PhD
Head of Venous Surgery
Maastricht University Medical Center
Uniklinik Aachen
Currently used stents

- Arterial design
 - sizes
 - lengths
 - Low radial force
 - Prevent internal hyperplasia
 - Drug eluting
- Examples:
 - Wall stent
 - Sinus XL stent
Requirements for stents per segment

- The vein geometry should dictate the shape of the stent and not VV !!
 - Flexibility
- The stent must be able to treat the underlying pathology
 - Radial Force
- Location dependent:
 - IVC: High radial force, low flexibility, large diameter.
 - CIV, EIV and CFV: High radial force, high flexibility, large diameters
Shortcomings of stents today

- Compression of stent (radial force to low)
- Kinking of stent (high rigidity)
- Tapering
- Stent rigidity
 - Bamboo stick effect
Shortcomings of stents today

- Compression of stent (radial force to low)
- Kinking of stent (high rigidity)
- Tapering
- Stent rigidity
 - Bamboo stick effect
Shortcomings of stents today

- Compression of stent (radial force to low)
- Kinking of stent (high rigidity)
- Tapering (especially Wallstent)
- Stent rigidity
 - Bamboo stick effect
Shortcomings of stents today

- Compression of stent (radial force to low)
- Kinking of stent (high rigidity)
- Tapering
- Stent rigidity
 - “Bamboo stick effect”
 - Visible after weeks due to straightening!!
Shortcomings of stents today

Visible after weeks due to **straightening**!!
Obstruction due to stent sticking out into the lumen \rightarrow alignment!!
Good alignment \rightarrow better long term patency \pm anticoagulation
Movements in pelvis/groin:

supine

sitting
New venous Stents

<table>
<thead>
<tr>
<th>Type</th>
<th>Radial force</th>
<th>flexibility</th>
<th>placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zilver Vena</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Veniti</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Sinus Venous</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Sinus XL flex</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

![Zilver Vena](image1.png)
![Veniti](image2.png)
![Sinus Venous](image3.png)
New venous Stents

• Oblique closed cell (6 cm length)
 • Flair it
 • Reposition it
 • Deploy
 • Extention with Sinus Venous for the iliofemoral tract
New venous Stents

Flexibility ++

Radial force ++
New Sinus-Venous stent
New Sinus-Venous stent \((N=31)\) vs Old design stents \((n=66)\): In PTS procedures

Arterial stents vs Sinus Venous for PTS

- New secondary
- Old secondary
- New Assited primary
- New primary
- Old assisted primary
- Old primary

\[\approx + 10\% \]

\[P < 0.05 \]
New Sinus-Venous stent vs Old design stents:
In PTS procedures

Complications first year

<table>
<thead>
<tr>
<th></th>
<th>Old design stent</th>
<th>%</th>
<th>Sinus Venous</th>
<th>%</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>66</td>
<td>100</td>
<td>31</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Reocclusion</td>
<td>16</td>
<td>24</td>
<td>3</td>
<td>10</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Kinking</td>
<td>7</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Fracture</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Tapering</td>
<td>19</td>
<td>29</td>
<td>4</td>
<td>13</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Residual compression</td>
<td>7</td>
<td>11</td>
<td>3</td>
<td>10</td>
<td>NS</td>
</tr>
<tr>
<td>Mild stenosis</td>
<td>17</td>
<td>26</td>
<td>9</td>
<td>29</td>
<td>NS</td>
</tr>
</tbody>
</table>

Higher flexibility
Higher radial force
Less reinterventions
Comparison of new venous Stents

<table>
<thead>
<tr>
<th>Type</th>
<th>Radial force</th>
<th>flexibility</th>
<th>placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zilver Vena</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Veniti</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Sinus Venous</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Sinus XL flex</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

Stent Performance Summary

<table>
<thead>
<tr>
<th>Stent</th>
<th>Positioning failure</th>
<th>Surface area (CIV)</th>
<th>Suboptimal apposition*</th>
<th>Straightening</th>
<th>Kinking</th>
<th>Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL</td>
<td>1/10</td>
<td>1.1 cm²</td>
<td>6/10</td>
<td>7/10</td>
<td>7/10</td>
<td>0/10</td>
</tr>
<tr>
<td>SV</td>
<td>4/10</td>
<td>1.2 cm²</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>ZV</td>
<td>1/10</td>
<td>0.8 cm²</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>VV</td>
<td>0/10</td>
<td>1.4 cm²</td>
<td>5/10</td>
<td>4/10</td>
<td>3/10</td>
<td>0/10</td>
</tr>
</tbody>
</table>

European Venous Centre; Aachen-Maastricht
Reconstruction and stenting in deep vein pathology
10-12 September 2015

Thrombolysis and stenting in deep vein thrombosis
26-28 November 2015

Duplex ultrasound in venous disease
10-12 December 2015

Info:

www.evtcentre.com
New dedicated venous stent are available and should be used!

- Sinus-Venous Stent:
 - No stent related reinterventions!!
 - better primary and secondary patency due to:
 - High flexibility with good alignment !
 - High radial force
 - Combined with oblique stent better positioning?!
- Zilver Vena
- Veniti
- More will come!!
New venous Stents

Flexibility ++

Radial force ++

European Venous Centre; Aachen-Maastricht