Initial Experience With Drug-Eluting, Bioresorbable Vascular Scaffolds Below-the-Knee

Dr Ramon Varcoe
Sydney, Australia
Disclosure

Speaker name:

.................... Ramon Varcoe ...

I have the following potential conflicts of interest to report:

- [] Consulting: Abbott, Boston, Gore, Covidien
- [] Employment in industry
- [] Stockholder of a healthcare company
- [] Owner of a healthcare company
- [] Other(s)

- [] I do not have any potential conflict of interest
DRUG ELUTING STENTS
Primary Patency

Percentage (at 12 months)

<table>
<thead>
<tr>
<th>Trial</th>
<th>YUKON-BTK</th>
<th>DESTINY</th>
<th>ACHILLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES</td>
<td>81</td>
<td>85</td>
<td>78</td>
</tr>
<tr>
<td>BMS</td>
<td>56</td>
<td>54</td>
<td>58</td>
</tr>
</tbody>
</table>

*P=0.004

*P=0.0001

*P=0.019
WHY USE STENTS?

• ELASTIC RECOIL
• TREAT DISSECTION
• DELIVER DRUG TO THE INTIMA TO PREVENT RESTENOSIS
• REDUCE LATE LUMEN LOSS
BIO-RESORBABLE VASCULAR SCAFFOLD
Representative photomicrographs of porcine coronary arteries, 2x, Movat's pentachrome
Transmission Electron Microscopy (TEM)

Smooth Muscle

Phenotypically contractile SMCs

SMC alignment

Restoration of Arterial Integrity and Function

1 Month

36 Month
Gradual disappearance of supportive structure

Mechanical Conditioning

Vessel recovers the ability to respond to physiologic stimuli

Shear stress, pulsatility & cyclic strain

Tissue adaptation

Structure and functionality

• Single centre
• 3 Implanters under special access conditions
• Chronic lower limb ischemia: RC 3-6

• Direct replacement for DES
• De novo lesions; length ≤50mm, diameters 2.5-4.0mm
• Tibial arteries (+P3)
• Sample size: ≥15 patients
ENDPOINTS

• **Safety**: Major adverse events @ 30d
 • Death, target limb loss, major morbidity

• **Feasibility**: Technical success

• **Clinical Improvement**: Rutherford-Becker Class

• **Duplex FU**: 1, 3, 6 & 12mo (PSVR > 2.0)
 • Primary, assisted primary & secondary patency
 • TVR, TLR
PW 60%
WF 50Hz
SV 1.5mm
M2
3.5MHz
2.8cm

Vel 82.7 cm/s
RESULTS

• 22 patients
 – 25 Limbs (CLI 60%:IC 40%)
 – Age range 69-90yo
 – M:F 60:40

• 32 Scaffolds
 – Vessels treated
 • ATA 4
 • PTA 4
 • PA 7
 • TPT 16
 • P3 2

• Mean lesion length **20.2mm** (5-50mm)
• 100% Procedural success
• 1 death (6mo)
• 1 lost to follow up (panc. Ca)
• 1 Acute occlusion
 (day 1: no DAPT)

• Clinical Improvement 88%
• Primary patency 94.4%
• Assisted primary/secondary patency 100%
• Limb salvage 100%
• TLR 5.6%
• TVR 5.6%
• 100% Procedural success
• 1 death (6mo)
• 1 lost to follow up (panc. Ca)
• 1 Acute occlusion
 (day 1: no DAPT)

• **Clinical Improvement** 88%
• Primary patency 94.4%
• Assisted primary/secondary patency 100%
• Limb salvage 100%
• TLR 5.6%
• TVR 5.6%
• 100% Procedural success
• 1 lost to follow up (panc. Ca)
• 1 death (6mo)
• 1 Acute occlusion
 (day 1: no DAPT)

• Clinical Improvement 88%
• **Primary patency** 94.4%
• Assisted primary/secondary patency 100%
• Limb salvage 100%
• TLR 5.6%
• TVR 5.6%
• 100% Procedural success
• 1 death (6mo)
• 1 lost to follow up (panc. Ca)
• 1 Acute occlusion
 (day 1: no DAPT)

• Clinical Improvement 88%
• Primary patency 94.4%
• Assisted primary/secondary patency 100%
• Limb salvage 100%
• TLR 5.6%
• TVR 5.6%
• BVS can be implanted safely within the tibial vasculature

• Excellent immediate angiographic results and promising 12-month patency can be achieved

• Dual anti-platelet agents are recommended to prevent thrombosis
Initial Experience With Drug-Eluting, Biodegradable Vascular Scaffolds Below-the-Knee

Dr Ramon Varcoe
Sydney, Australia